295 research outputs found

    Radiative properties of visible and subvisible Cirrus: Scattering on hexagonal ice crystals

    Get PDF
    One of the main objectives of the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) is to provide a better understanding of the physics of upper level clouds. The focus is on just one specific aspect of cirrus physics, namely on characterizing the radiative properties of single, nonspherical ice particles. The basis for further more extensive studies of the radiative transfer through upper level clouds is provided. Radiation provides a potential mechanism for strong feedback between the divergence of in-cloud radiative flux and the cloud microphysics and ultimately on the dynamics of the cloud. Some aspects of ice cloud microphysics that are relevant to the radiation calculations are described. Next, the Discrete Dipole Approximation (DDA) is introduced and some new results of scattering by irregular crystals are presented. The Anomalous Diffraction Theory (ADT) was adopted to investigate the scattering properties of even larger crystals. In this way the scattering properties of nonspherical particles were determined over a range of particle sizes

    Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models

    Get PDF
    A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds

    Smoothed particle hydrodynamics simulation of high velocity impact dynamics of molten sand particles

    Get PDF
    Sand ingestion is highly detrimental for gas turbines because it leads to erosion and corrosion of engine components, accelerating material fatigue and contributing to global engine failure. In this paper the high velocity impact of a molten sand particle onto a solid wall is investigated by means of the Smoothed Particles Hydrodynamics method where the three phases are taken into account. Nominal conditions are a 25 μm particle composed of molten sand (dynamic viscosity μl=11 Pa·s) impacting the wall at a velocity of 250 m/s. The influence of different parameters are explored such as the mechanical properties of the molten sand particle (density, viscosity, surface tension), the impact conditions (velocity magnitude, particle size and angle of impact) as well as the particle shape (sphere or cube with different geometrical features impacting the wall). It is found that the particles do not form a lamella during the impact but mostly conserve its initial shape. It is also confirmed that sharp features such as edges lead to a larger normal pressure at the impact location. Correlations to quantify (i) the spread factor, (ii) the maximum and mean impact force and impact pressure and (iii) the slip distance are derived for the first time based on the investigated parameters. The importance of these correlations is that they provide information needed to implement low-order models for studying impact and deposition of molten sand in engineering simulations

    Resistance to cadmium in a marine bacterium

    Get PDF

    Indigenous access to mainstream public and community housing

    Get PDF
    Access by Indigenous people to mainstream public housing has increased by around 75 per cent between June 2000 and June 2004 (up from 6339 to 11 087 households respectively). There is a need to further boost the stock of larger dwellings to reduce overcrowding for Indigenous households in mainstream public housing, and to continue to improve the sustainability of tenancies.Paul Flatau, Natalie McGrath, Selina Tually, Lesley Cooper, Mary Morris, Marc Adam, Dora Marinova and Andrew Bee

    The North Atlantic subpolar gyre in four high resolution models

    Get PDF
    The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more

    Mutation Analysis of NR5A1 Encoding Steroidogenic Factor 1 in 77 Patients with 46, XY Disorders of Sex Development (DSD) Including Hypospadias

    Get PDF
    BACKGROUND: Mutations of the NR5A1 gene encoding steroidogenic factor-1 have been reported in association with a wide spectrum of 46,XY DSD (Disorder of Sex Development) phenotypes including severe forms of hypospadias. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the frequency of NR5A1 gene mutations in a large series of patients presenting with 46,XY DSD and hypospadias. Based on their clinical presentation 77 patients were classified either as complete or partial gonadal dysgenesis (uterus seen at genitography and/or surgery, n = 11), ambiguous external genitalia without uterus (n = 33) or hypospadias (n = 33). We identified heterozygous NR5A1 mutations in 4 cases of ambiguous external genitalia without uterus (12.1%; p.Trp279Arg, pArg39Pro, c.390delG, c140_141insCACG) and a de novo missense mutation in one case with distal hypospadias (3%; p.Arg313Cys). Mutant proteins showed reduced transactivation activity and mutants p.Arg39Pro and p.Arg313Cys did not synergize with the GATA4 cofactor to stimulate reporter gene activity, although they retained their ability to physically interact with the GATA4 protein. CONCLUSIONS/SIGNIFICANCE: Mutations in NR5A1 were observed in 5/77 (6.5%) cases of 46,XY DSD including hypospadias. Excluding the cases of 46,XY gonadal dysgenesis the incidence of NR5A1 mutations was 5/66 (7.6%). An individual with isolated distal hypopadias carried a de novo heterozygous missense mutation, thus extending the range of phenotypes associated with NR5A1 mutations and suggesting that this group of patients should be screened for NR5A1 mutations
    • …
    corecore